如今是互联网大数据时代,很多人知道大数据,却不知道大数据,究竟是如何提炼有价值信息的,这就不得不说大数据处理技术了。那么大数据处理技术是什么?数据处理是对复杂海量数据,进行有价值的提炼,而最有价值的部分是预测分析,它可以帮助数据科学家通过数据挖掘形式,例如数据可视化,统计模式识别和数据描述等更好地理解数据。根据数据挖掘的结果制定预测性决策。
大数据处理技术有哪些?
1.分布式计算
对于如何处理大数据,计算机科学界有两大方向。
第一个方向是集中式计算,就是通过不断增加处理器的数量来增强单个计算机的计算能力,从而提高处理数据的速度。
第二个方向是分布式计算,就是把一组计算机通过网络相互连接组成分散系统,然后将需要处理的大量数据分散成多个部分,交由分散系统内的计算机组同时计算,最后将这些计算结果合并,得到最终的结果。
尽管分散系统内的单个计算机的计算能力不强,但是由于每个计算机只计算一部分数据,而且是多台计算机同时计算,所以就分散系统而言,处理数据的速度会远高于单个计算机。
过去,分布式计算理论比较复杂,技术实现比较困难,因此在处理大数据方面,集中式计算一直是主流解决方案。
IBM 的大型机就是集中式计算的典型硬件,很多银行和政府机构都用它处理大数据。不过,对于当时的互联网公司来说,IBM 的大型机的价格过于昂贵。因此,互联网公司把研究方向放在了可以使用在廉价计算机上的分布式计算上。
2.服务器集群
服务器集群是一种提升服务器整体计算能力的解决方案。它是由互相连接在一起的服务器群组成的一个并行式或分布式系统。
由于服务器集群中的服务器运行同一个计算任务,因此,从外部看,这群服务器表现为一台虚拟的服务器,对外提供统一的服务。
尽管单台服务器的运算能力有限,但是将成百上千的服务器组成服务器集群后,整个系统就具备了强大的运算能力,可以支持大数据分析的运算负荷。
通过上述介绍,大数据处理技术是什么,以及大数据处理技术有哪些相信大家已经清楚了吧,想了解更多关于大数据的信息,请继续关注中培教育。