大数据

大数据到认知计算理论发展

2017-03-31 17:02:39 | 来源:中培企业IT培训网

认知计算是IBM提出的概念,中培教育《大数据分析及可视化技术应用实战》培训专家钟老师介绍,在IBM的这一概念中,“认知计算”是通过与人的自然语言交流及不断地学习,从而帮助人们做到更多的系统,是从硬件架构到算法策略、从程序设计到行业专长等多个学术领域的结合,能够使人们更好地从海量复杂的数据中获得更多洞察,从而做出更为精准的决策。IBM清晰地把认知计算定义为——具备规模化学习、根据目标推理以及与人类自然互动能力的系统。

认知计算和大数据分析有何区别?

大数据分析属于认知计算的一个维度。与大数据相比,认知计算的范围更广、技术也更为先进。

认知计算和大数据分析有类似的技术,比如大量的数据、机器学习(MachineLearning)、行业模型等,大数据分析更多强调的是获得洞察,通过这些洞察进行预测。此外,传统的大数据分析会使用模型或者机器学习的方法,但更多的是靠专家提供。

对于认知计算而言,洞察和预测只是其中的一种。但是,认知计算更为强调人和机器之间自然的交互,这些维度都不是传统的大数据分析所强调。

此外,认知计算目前成长很快的一个领域为深度学习(DeepLearning),它的学习方法与传统方法不同,更多的是基于大量的数据通过自学的方式得到这样的模型,而不需要很多的人为干预,这个从学习方法来讲和大数据分析有很多不同的地方。

CPUGPUASIC等传统计算资源的瓶颈

近十年来,人工智能又到了一个快速发展的阶段。深度学习在其发展中起到了中流砥柱的作用,尽管拥有强大的模拟预测能力,深度学习还面临着超大计算量的问题。在硬件层面上,GPUASICFPGA都是解决庞大计算量的方案。

时至今日,据2006年已经过去了十年,过去的十年集成电路的发展还是遵循着摩尔定律,CPU的性能得到了极大的提升,然而,这并没有让CPU再次走入深度学习研究者的视野。尽管在小数据集上CPU能有一定的计算能力表现,多核使得它能够并行处理,然而这对深度学习来说还是远远不够的。

GPU:虽然走进了研究者的视线,相比于CPUGPU的核心数大大提高了,这也让它有更强大的并行处理能力,它还有更加强大的控制数据流和储存数据的能力。在 Chikkerur进行了CPUGPU在处理目标识别能力上的差别,最终GPU的处理速度是CPU3-10倍。

ASIC:专用集成电路芯片(ASIC)由于其定制化的特点,是一种比GPU更高效的方法。但是其定制化也决定了它的可迁移性低,一旦专用于一个设计好的系统中,要迁移到其它的系统是不可能的。并且,其造价高昂,生产周期长,使得它在目前的研究中是不被考虑的。

FPGA是计算的未来?

FPGAFPGAGPUASIC中取得了权衡,很好的兼顾了处理速度和控制能力。一方面,FPGA是可编程重构的硬件,因此相比GPU有更强大的可调控能力;另一方面,与日增长的门资源和内存带宽使得它有更大的设计空间。更方便的是,FPGA还省去了ASIC方案中所需要的流片过程。

FPGA的一个缺点是其要求使用者能使用硬件描述语言对其进行编程。但是,已经有科技公司和研究机构开发了更加容易使用的语言比如Impulse Accelerated Technologies Inc. 开发了C-to-FPGA编译器使得FPGA更加贴合用户的使用,耶鲁的E-Lab则开发了Lua脚本语言。这些工具在一定程度上缩短了研究者的开发时限,使研究更加简单易行。


标签: 大数据分析

预约领优惠