数据库表的表面上有索引和防错机制,但是简单的查询将花费很长时间。Web应用程序在开发环境中可能工作良好,但在生产环境中的性能同样很差。如果您是数据库管理员,则在某个阶段可能会遇到上述情况。因此,MySQL数据库优化技巧就显得尤为重要。那么MySQL数据库优化技巧有哪些?数据库从一开始设计,就不能将其成熟的数据库体系结构设计为具有高可用性,高可伸缩性和其他特征。随着用户数量的增加,数据库才逐渐得到改善。除了前端应用程序之外,它可以大致分为以下五个阶段:
阶段一:数据库表设计
项目立项后,开发部门根据产品部门需求开发项目。
开发工程师在开发项目初期会对表结构设计。对于数据库来说,表结构设计很重要,如果设计不当,会直接影响到用户访问网站速度,用户体验不好!这种情况具体影响因素有很多,例如慢查询、没有适当建立索引、数据库堵塞等。当然,有测试部门的团队,会做产品测试,找Bug。
由于开发工程师重视点不同,初期不会考虑太多数据库设计是否合理,而是尽快完成功能实现和交付。等项目上线有一定访问量后,隐藏的问题就会暴露,这时再去修改就不是这么容易的事了!
阶段二:数据库部署
是时候运维工程师出场了,项目上线。
项目初期访问量一般是寥寥无几,此阶段Web+数据库单台部署足以应对在1000左右的QPS。考虑到单点故障,应做到高可用性,可采用MySQL主从复制+Keepalived实现双机热备。主流HA软件有:Keepalived、Heartbeat。
阶段三:数据库性能优化
如果将MySQL部署到普通的X86服务器上,在不经过任何优化情况下,MySQL理论值正常可以处理1500左右QPS,经过优化后,有可能会提升到2000左右QPS。否则,访问量当达到1500左右并发连接时,数据库处理性能可能响应就会慢,而且硬件资源还比较富裕,这时就该考虑性能优化问题了。
阶段四:数据库架构扩展
随着业务量越来越大,单台数据库服务器性能已无法满足业务需求,该考虑增加服务器扩展架构了。主要思想是分解单台数据库负载,突破磁盘I/O性能,热数据存放缓存中,降低磁盘I/O访问频率。
阶段五:数据库维护
数据库维护是数据库工程师或运维工程师的工作,包括系统监控、性能分析、性能调优、数据库备份和恢复等主要工作。
由于关系型数据库初衷设计限制,在大数据处理时会显得力不从心。因此NoSQL火起来了,天生励志,具备分布式、高性能、高可靠等特性,弥补了关系型数据库某方面先天性不足,非常适合存储非结构化数据。主流NoSQL数据库有:MongoDB、HBase、Cassandra等。
好了关于MySQL数据库优化技巧有哪些的内容介绍到这里就结束了,想了解更多关于MySQL数据库的信息,请继续关注中培教育。