人工智能在各行业的迅速落地,使很多任务的完成成本大幅降低,效率显著提升。与此同时,作为其技术内核,机器学习和深度学习算法也越来越受到人们的关注,越来越多的行业的从业者都希望了解和学习机器学习与深度学习算法的相关原理,并希望将其与自己的领域相结合,拓展新思路,形成新的解决方案。
本课程主要面向以机器学习与深度学习为专业方向的学员,以及想要了解和学习机器学习与深度学习算法的各行业从业者,以较为通俗讲解机器学习与深度学习算法,辅以日常生活中的例子和编程实验,涉及机器学习领域中比较常见的经典模型,以及新兴的深度学习中的卷积神经网络、循环神经网络等模型。
本课程侧重于对算法思路的梳理和分析,以及对算法中每个步骤、每条公式含义的讲解。力图让读者学习到经典模型的算法步骤和数学形式,更重要的是理解每个算法形成的思路和过程,培养算法思维,获得在日常工作和学习中更为通用的能力。 强调动手操作;内容以代码落地为主,以理论讲解为根,以公式推导为辅。讲解机器学习和深度学习的模型理论和代码实践,梳理机器学习、深度学习、计算机视觉的技术框架,从根本上解决如何使用模型、优化模型的问题。
熟悉Python基础语法;
熟悉Anaconda环境配置与基本操作;
掌握Matplotlib可视化技术;
掌握Numpy技术基础;
掌握机器学习最低限度的数学知识;
掌握机器学习的基本原理;
掌握神经网络的结构;
熟悉深度神经网络与深度学习技术基础;
掌握经典的深度学习框架技术;
具备一定的机器学习与深度学习编程实战经验。
具备一定的Python和软件开发基础,希望深入了解机器学习和深度学习底层原理、数学原理、以及卷积神经网络、循环神经网络等实用化编程技术的广大工程技术人员。